skip to main content


Search for: All records

Creators/Authors contains: "Lovenduski, Nicole S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Orbital precession has been linked to glacial cycles and the atmospheric carbon dioxide (CO2) concentration, yet the direct impact of precession on the carbon cycle is not well understood. We analyze output from an Earth system model configured under different orbital parameters to isolate the impact of precession on air‐sea CO2flux in the Southern Ocean—a component of the global carbon cycle that is thought to play a key role on past atmospheric CO2variations. Here, we demonstrate that periods of high precession are coincident with anomalous CO2outgassing from the Southern Ocean. Under high precession, we find a poleward shift in the southern westerly winds, enhanced Southern Ocean meridional overturning, and an increase in the surface ocean partial pressure of CO2along the core of the Antarctic Circumpolar Current. These results suggest that orbital precession may have played an important role in driving changes in atmospheric CO2.

     
    more » « less
  2. Abstract

    Air‐sea exchange of carbon dioxide (CO2) in the Southern Ocean plays an important role in the global carbon budget. Previous studies have suggested that flow around topographic features of the Southern Ocean enhances the upward supply of carbon from the deep to the surface, influencing air‐sea CO2exchange. Here, we investigate the role of seafloor topography on the transport of carbon and associated air‐sea CO2flux in an idealized channel model. We find elevated CO2outgassing upstream of a seafloor ridge, driven by anomalous advection of dissolved inorganic carbon. Argo‐like Lagrangian particles in our channel model sample heterogeneously in the vicinity of the seafloor ridge, which could impact float‐based estimates of CO2flux.

     
    more » « less
  3. Abstract

    Pinatubo erupted during the first decadal survey of ocean biogeochemistry, embedding its climate fingerprint into foundational ocean biogeochemical observations and complicating the interpretation of long‐term biogeochemical change. Here, we quantify the influence of the Pinatubo climate perturbation on externally forced decadal and multi‐decadal changes in key ocean biogeochemical quantities using a large ensemble simulation of the Community Earth System Model designed to isolate the effects of Pinatubo, which cleanly captures the ocean biogeochemical response to the eruption. We find increased uptake of apparent oxygen utilization and preindustrial carbon over 1993–2003. Nearly 100% of the forced response in these quantities are attributable to Pinatubo. The eruption caused enhanced ventilation of the North Atlantic, as evidenced by deep ocean chlorofluorocarbon changes that appear 10–15 years after the eruption. Our results help contextualize observed change and contribute to improved constraints on uncertainty in the global carbon budget and ocean deoxygenation.

     
    more » « less
  4. null (Ed.)
    Abstract The California Current System (CCS) sustains economically valuable fisheries and is particularly vulnerable to ocean acidification, due to its natural upwelling of carbon-enriched waters that generate corrosive conditions for local ecosystems. Here we use a novel suite of retrospective, initialized ensemble forecasts with an Earth system model (ESM) to predict the evolution of surface pH anomalies in the CCS. We show that the forecast system skillfully predicts observed surface pH variations a year in advance over a naive forecasting method, with the potential for skillful prediction up to five years in advance. Skillful predictions of surface pH are mainly derived from the initialization of dissolved inorganic carbon anomalies that are subsequently transported into the CCS. Our results demonstrate the potential for ESMs to provide skillful predictions of ocean acidification on large scales in the CCS. Initialized ESMs could also provide boundary conditions to improve high-resolution regional forecasting systems. 
    more » « less
  5. Abstract

    Anthropogenic carbon emissions and associated climate change are driving rapid warming, acidification, and deoxygenation in the ocean, which increasingly stress marine ecosystems. On top of long‐term trends, short term variability of marine stressors can have major implications for marine ecosystems and their management. As such, there is a growing need for predictions of marine ecosystem stressors on monthly, seasonal, and multi‐month timescales. Previous studies have demonstrated the ability to make reliable predictions of the surface ocean physical and biogeochemical state months to years in advance, but few studies have investigated forecast skill of multiple stressors simultaneously or assessed the forecast skill below the surface. Here, we use the Community Earth System Model (CESM) Seasonal to Multiyear Large Ensemble (SMYLE) along with novel observation‐based biogeochemical and physical products to quantify the predictive skill of dissolved inorganic carbon (DIC), dissolved oxygen, and temperature in the surface and subsurface ocean. CESM SMYLE demonstrates high physical and biogeochemical predictive skill multiple months in advance in key oceanic regions and frequently outperforms persistence forecasts. We find up to 10 months of skillful forecasts, with particularly high skill in the Northeast Pacific (Gulf of Alaska and California Current Large Marine Ecosystems) for temperature, surface DIC, and subsurface oxygen. Our findings suggest that dynamical marine ecosystem prediction could support actionable advice for decision making.

     
    more » « less
  6. null (Ed.)
  7. Abstract

    Large volcanic eruptions drive significant climate perturbations through major anomalies in radiative fluxes and the resulting widespread cooling of the surface and upper ocean. Recent studies suggest that these eruptions also drive important variability in air‐sea carbon and oxygen fluxes. By simulating the Earth system using two initial‐condition large ensembles, with and without the aerosol forcing associated with the Mt. Pinatubo eruption in June 1991, we isolate the impact of this volcanic event on physical and biogeochemical properties of the ocean. The Mt. Pinatubo eruption forced significant anomalies in surface fluxes and the ocean interior inventories of heat, oxygen, and carbon. Pinatubo‐driven changes persist for multiple years in the upper ocean and permanently modify the ocean's heat, oxygen, and carbon inventories. Positive anomalies in oxygen concentrations emerge immediately post‐eruption and penetrate into the deep ocean. In contrast, carbon anomalies intensify in the upper ocean over several years post‐eruption, and are largely confined to the upper 150 m. In the tropics and northern high latitudes, the change in oxygen is dominated by surface cooling and subsequent ventilation to mid‐depths, while the carbon anomaly is associated with solubility changes and eruption‐generated El Niño—Southern Oscillation variability. We do not find significant impact of Pinatubo on oxygen or carbon fluxes in the Southern Ocean; but this may be due to Southern Hemisphere aerosol forcing being underestimated in Community Earth System Model 1 simulations.

     
    more » « less
  8. Abstract

    Interannual variations in the flux of carbon dioxide (CO2) between the land surface and the atmosphere are the dominant component of interannual variations in the atmospheric CO2growth rate. Here, we investigate the potential to predict variations in these terrestrial carbon fluxes 1–10 years in advance using a novel set of retrospective decadal forecasts of an Earth system model. We demonstrate that globally-integrated net ecosystem production (NEP) exhibits high potential predictability for 2 years following forecast initialization. This predictability exceeds that from a persistence or uninitialized forecast conducted with the same Earth system model. The potential predictability in NEP derives mainly from high predictability in ecosystem respiration, which itself is driven by vegetation carbon and soil moisture initialization. Our findings unlock the potential to forecast the terrestrial ecosystem in a changing environment.

     
    more » « less